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Summary

In this thesis, we present three projects that describe the use of the XMM-Newton Cluster
Survey (XCS) to investigate exotic astrophysical phenomena. Each project widens the
scope of XCS beyond the study of cluster cosmology.

In the first project, we derive correlations between X-ray properties of Active Galactic
Nuclei (AGN) and mass of its Super Massive Black Hole (SMBH). These properties are
the X-ray luminosity (LX) and a measure of the variability of the AGN - the normalised
excess variance (�2

NXS). We confirm previous results indicating an anti-correlation between
black hole mass (MBH) and �2

NXS, as well as anti-correlation between LX and �2
NXS, and

a positive correlation between LX and MBH. We investigate whether there is a redshift
evolution in these relations. We then develop methods to estimate MBH from short ex-
posure X-ray observations specific to the eROSITA observatory, to allow us to measure
LX of millions of AGN.

The second project describes a new method to detect the rarest of X-ray transient sources,
X-ray flashes (XRFs), through a serendipitous search of the XCS catalogue. We categorize
the detected XRF candidates and look in more detail at one that is most likely to be an
XRF. Based on its properties, we estimate an upper limit to their occurrence.

A third project describes our method to search for an unknown emission line in the stacked
spectra of galaxy clusters from the XCS extended source catalogue. This line, if found,
may be evidence of a hypothetical particle - the sterile neutrino - which has been postu-
lated as a candidate for dark matter.

We review other research that has led to published work, as well as laying the foundation
for future collaborations. This includes work on improving the XCS temperature pipeline
in order to estimate the temperatures of galaxy clusters.
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Bentz and Katz (2015) plotted against hard-band luminosity estimated
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Grey regions are 1 and 2-� scatter. Plots and correlations by Arya Farahi,
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5.1 Light-curves in di�erent energy bands of the Wide Field Cameras on-board

BeppoSAX, showing an XRF detected in the lower energy band X-ray region

but not in higher gamma ray regions. Image from Heise et al. (2001). . . . 117

5.2 The lightcurves on the same scale of a typical gamma-ray burst GRB 980329

(right) and a prototypical X-ray ash 971019 (left) as recorded by the Wide

Field Camera (WFC) and the Gamma-Ray Burst Monitor (GRBM), aboard

the ItalianDutch satellite BeppoSAX. GRB 980329 produces a strong signal

in the GRBM (40 to 700 keV) as is expected of a gamma-ray burst. In

contrast, the event of 971019 does not produce any signal in the GRBM.

Image from Heise et al. (2001). . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Figure from Law et al. (2004). XMM (a) is 90 per cent upper limit at

10 counts per XRF, XMM (b) is 90 per cent upper limit at 200 counts

per XRF, both limits are derived with an energy passband of 1.4 to 15 keV

from Law et al. (2004). The 90 per cent ROSAT upper limit with an energy

passband of 0.5 to 2.0 keV from Vikhlinin (1998) is also shown, as is The

Burst and Transient Source Experiment (BATSE) and BeppoSAX GRBs

and XRFs results. The best �t power-law � is shown to XRFs where� = - 3
2 .120

5.4 Histogram of T90 duration for X-ray counterpart of GRBs (blue) and X-

ray ashes (red) where T90 is the duration of the interval above 90% of the

peak ux. Image from Heise et al. (2001). . . . . . . . . . . . . . . . . . . . 121

5.5 Typical light-curve of a aring star from Lo et al. (2014) showing that the

peak rate in light-curve at the are falls away exponentially over a longer

period than an XRF (compare with Figure 5.4). . . . . . . . . . . . . . . . . 123

5.6 A PSFgenerated from thepsfgen script as described above in Section 5.4.1.

Right, a pixel near the centre has a greater value, (in this case 0.0054) than

one at the outskirts shown on the left (9.38x10� 5). . . . . . . . . . . . . . . 124

5.7 PNObsID 012590101, shown in DETX, DETY chip coordinates with a fake

160 count XRF Top, Full 47 ks exposure time with XRF shown in green,

and all other photons in grey. Bottom, left 500 sec time bin before the

dummy XRF, middle 500 sec during ash, right 500 sec time bin after the

dummy XRF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
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5.8 Histograms showing exposure time of detected dummy XRFs (dark grey

bars) with 20 (left top), 40 (left bottom), 80(right top) and 160 photons

(right bottom) and all ObsIDS where dummy ashes were inserted (light

grey). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.9 Percentage of dummy XFRs with 20 (grey) 40 green), 80 (blue) and 160

(red) photons that are detected by our method when inserted into 1000

random ObsIDs as a function of ObsID exposure time. . . . . . . . . . . . . 128

5.10 Top. Image from PNdetector of ObsID 0055140101 with 202 green region

around position of the candidate XRF detected by Law et al. (2004). Bot-

tom. Image from PNdetector of ObsID 0125300101 with 202 green region

detected by Law et al. (2004). No point source is detected byXAPAat either

position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.11 XMMXCSJ015708.9+373739.8. Top. X-ray image inPNobservation 0149780101
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region. Bottom. PN, MOS1and MOS2light curves. . . . . . . . . . . . . . . . 139

5.12 XMMXCSJ015708.9+373739.8. Top CombinedPN, MOS1and MOS2images

of ObsID 0148990101 in 0.5-2.0 keV band together with 32xzoom of source

region in PN, MOS1and MOS2. Middle, `Film strip' of PNimages around

the source region in 1500 sec frames, showing frames 3-7 (of 20) from total

exposure. Bottom. Left - PNdetector Light-curve in 50 sec time-bins centred

around the ash event. Right, source spectrum fromPNdetector. . . . . . . 140

5.13 Comparison between the best �t models for thePNdetector spectrum of

XRF candidate XMMXCSJ015708.9+373739.8. Left is the spectrum �t to

an absorbed powerlaw (typical of an XRF), and right when �t with an

absorbed blackbody model (typical of a Type 1 X-ray burst). The lower

panel in each case are the residuals from the best �t. . . . . . . . . . . . . . 141

5.14 Light-curve for XMMXCSJ015708.9+373739.8 now in 5 second time bins

showing the period of the ash event. The rise time and decay is consistant

with being an XRF rather than that of a Type 1 X-ray burst which would

show a fast rise time and exponential decay. . . . . . . . . . . . . . . . . . . 142

5.15 Top. Histogram of exposure live times for 1023 observations where a dummy

XRF with 142 counts has been inserted at random with blue bars showing

number of ashes detected using our method described in Section 5.4.1.

Bottom shows the detection fraction by exposure live time. . . . . . . . . . 143
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5.16 Figure adapted from Law et al. (2004). As Figure 5.3 but now including

our 68% upper limit result in the energy passband 0.5 to 2.0 keV shown in

red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.1 Rotation curve of NGC 6503. The black dots are the estimated rotational

velocity of stars from observations, the dotted, dashed and dash-dotted lines

are the contributions of gas, disk and dark matter, respectively. Image and

caption from Begeman et al. (1991). . . . . . . . . . . . . . . . . . . . . . . 148

6.2 Composite image of The Bullet Cluster. The red traces the hot intra-cluster

gas, the blue traces the dark matter component through gravitational lens-

ing and the white is the optical content. Image composite credit: X-ray:

NASA / CXC / CfA / M.Markevitch et al.; Optical: NASA / STScI; Magel-

lan / U.Arizona / D.Clowe et al.; Lensing Map: NASA / STScI; ESO WFI;

Magellan / U.Arizona / D.Clowe et al. . . . . . . . . . . . . . . . . . . . . 149

6.3 Power spectrum of the temperature uctuations in the Cosmic Microwave

Background. The height of the third peak indicates the amount of dark
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6.4 Large scale structure as shown in Sloan Digital Sky Survey 1.25 Declination
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6.5 Estimated loci of select dark-matter models in the space of candidate mass

in GeV versus dark-matter-candidatenucleon interaction cross section, Fig-
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Matter. https://science.energy.gov/ � /media/hep/pdf/�les/pdfs/dmsagreportjuly18 2007.pdf
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6.6 MOS(left) and PNstacked spectra from XMM observations of 73 clusters as

analyzed by Bulbul et al. (2014). The red line is the best �t APECmodel.
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6.7 Improvement of the �t when adding a Gaussian emission line into the �tting

model of the Perseus cluster as observed by Suzaku. Di�erent colours are

from individual detectors and the black line from the combined detectors.

Left image is from the core region, right image is from stacked observations

of regions away from the core. Bottom panel of each is the best �t norm-

alisation. Image from Urban et al. (2015) who highlight the two unknown
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6.9 Top. Stacked spectrum taken from four Chandra observations of the AGN
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Conlon et al. (2016). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
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(2014) and where the where� T
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6.14 Schematic diagram demonstrating our spectral blueshi�ng method. Left. A
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by the three coloured bars, each with a energy range of �E and with a

height depending on a number of photons within the energy range of the

bin. Centre. We assign a random energy for each photon within the energy

range of the bin. The higher the energy of the photon, the higher up the bin

they sit, to a maximum energy of the bin. Right. When blueshifting, the

photon energy is increased by a factorp1 � zq, represented as the photons

being higher within the bin. Where photons are now above the maximum

energy for the bin, they transfer to a higher energy bin. We make a new

spectrum from this new distribution. . . . . . . . . . . . . . . . . . . . . . . 165
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6.16 PN observation 0201900101 of cluster XMMXCSJ000349.3-020404.8 show-
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6.19 Figure shows how adding a Gaussian emission line to awabs� vapec model
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7.1 [Image and caption taken from Mehrtens et al. (2016) (Figure 4).] LEFT:

The Halo Occupation Distribution of CMASS-galaxies (0:43   z   0:7)

as a function of halo mass within X-ray selected clusters (XCS-DR1:

blue circles; XCS-Ancillary: red circles). Uncertainties (including those
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with a HON value of 0 are shown as upper limits due to the log-scale of

the y-axis. RIGHT: The mean Halo Occupation Distribution of CMASS-
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of clusters (XCS-DR1: blue squares; XCS-DR1 plus XCS-Ancillary: red

squares). Uncertainties on the binned points are given by the error on the

mean. BOTH: The mean HOD prediction (and the 1-� uncertainty range)

for the combined central and satellite population of W11 is indicated by the
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7.2 [Image and caption taken from Wilson et al. (2016) (Figure 3).] The� v {

T relation assuming no evolution, i.e.,C � 0 in Equation 3, for low (left
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seen in Equation 3 was used in the Metropolis algorithm to determine a
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7.3 [Image and caption taken from Ryko� et al. (2016) (Figure 10).] TX { �

scaling relation derived from XCS (magneta squares) andChandra (blue

circles) clusters. All Chandra temperatures have been corrected according
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dashed gray lines show 2� int intrinsic scatter constraints. . . . . . . . . . . . 188

7.4 [Image and caption taken from Wilcox et al. (2015) (Figure 5).] Mass pro�le
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line shows the thermal mass with an additional non-thermal component as

discussed in the text. The vertical line is the upper extent of our X-ray

data; to its right we have extrapolated the X-ray data. . . . . . . . . . . . . 189
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limits on the scatter. Bottom: The latest (September 2017) version of this
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C.1 XMMXCSJ061606.4-211801.4. Top. X-ray image inPNobservation 0300800101
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gion. Bottom. PNand MOS2light curves (no MOS1light-curve was made due
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C.2 XMMXCSJ102809.3-434628.7. Top. X-ray image inPNobservation 0300430101

with 32xzoom 0.5-2.0 keV and optical DSS image, each with green 202 re-

gion. Bottom. PNand MOS2light curves (no MOS1light-curve was made due
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gion. Bottom. PN, MOS1and MOS2light curves. . . . . . . . . . . . . . . . . 245

D.2 XMMXCSJ001527.9-390508.8. Top. X-ray image inPNobservation 0149780101

with 32xzoom 0.5-2.0 keV and optical DES image, each with green 202 re-

gion. Bottom. PNand MOS2light curves (no MOS1light-curve was made due
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D.4 XMMXCSJ011057.3-730515.2. Top. X-ray image inPNobservation 0601212201
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gion. Bottom. PNand MOS2light curves (no MOS1light-curve was made due
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D.7 XMMXCSJ042815.1+155410.6. Top. X-ray image in MOS1observation

0101440501 with 32xzoom 0.5-2.0 keV and optical DSS image, each with

green 202 region. Bottom. PN, MOS1and MOS2light curves. . . . . . . . . . . 251
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D.8 XMMXCSJ050749.0-373823.9. Top. X-ray image inPNobservation 0110980801

with 32xzoom 0.5-2.0 keV and optical DES image, each with green 202 re-

gion. Bottom. PN, MOS1and MOS2light curves. . . . . . . . . . . . . . . . . 252

D.9 XMMXCSJ053547.0-062911.8. Top. X-ray image inPNobservation 0089940301

with 32xzoom 0.5-2.0 keV and optical DSS image, each with green 202 re-
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D.10 XMMXCSJ065423.9-240056.5. Top. X-ray image inPNobservation 0652250701
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D.11 XMMXCSJ074410.3+393507.2. Top. X-ray image inPNObservation 0551851201
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Chapter 1

Introduction

1.1 Thesis Introduction and Layout

`The e�ort to understand the Universe is one of the very few things that lifts

human life a little above the level of farce, and gives it some of the grace of

tragedy' -Weinberg, S. (1977)

This thesis represents a personal e�ort to understand the Universe.

Cosmologists ask questions about the structure and evolution of the Universe. Through

the projects described herein, we attempt to answer some of these by looking at astro-

physical phenomena that reveal their nature through emission of X-ray radiation.

In Chapter 3 we describe how the growth of galaxies interplays with, and can be inferred

from, the size of the Super Massive Black Holes (SMBH) at their centre. In Chapter 4, we

describe our techniques to estimate the masses of SMBH by measuring the X-rays from

their associated Active Galactic Nucleus (AGN) and make predictions about how future

X-ray missions will increase our knowledge. This chapter is being prepared as a journal

article for submission to MNRAS.

In Chapter 5 we describe a new method to search for and describe detections of one of the

most exotic and rare X-ray astrophysical phenomena, X-ray Flashes (XRF).

In Chapter 6 we describe new techniques to search for evidence of an as-yet hypothetical

particle - the sterile neutrino. This has been postulated as a candidate for dark matter.
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In Chapter 7 we describe some updates that were made to the methodology used by the

XCS to estimate the masses of galaxy clusters, and review the papers where this work has

been published.

In each of these chapters, we will summarise the aims and results of each project, highlight

where the work is new to the �eld, and suggest how future work may develop the research

further. We summarise these in Chapter 8.

All the projects described in this thesis make extensive use of the X-ray sources detec-

ted and catalogued by the XMM-Newton Cluster Survey (XCS) Romer et al. (2001). In

Chapter 2 we review this thesis-speci�c project, as well as many software suites and meth-

ods used to detect and analyse the X-ray data.

We begin, in this Chapter, with an overview of the current cosmological model and X-

ray astronomy which underpins the science that follows. Section 1.2 de�nes the current

cosmological model and distance measurements. Section 1.3 gives an overview on X-ray

astronomy and describes some of the astrophysical emission processes relevant to this

thesis. Section 1.4 summarises the X-ray sources that are at the heart of the science

projects. Section 1.6 is an overview of how X-ray observatories detect those sources. In

particular, we introduce and focus on the XMM-Newton observatory in Section 1.8, and

mention other X-ray satellites in Section 1.9.

1.2 Cosmological Model

1.2.1 The Current Cosmological Paradigm

Like any traveller, a visitor arriving in the Universe would want to get acquainted with

its environs, its history and laws. The current cosmological model is a good place to

begin and will be the assumed model throughout this thesis. It is founded on two basic

premises. First, that on large enough scale, the Universe ishomogeneous, it looks the

same at each point. Second, it isisotropic, it looks the same in all directions. This

20th Century extension of the Copernican principle, that there is nowhere that can be

considered as `special', is the foundation of modern day cosmology upon which we can

begin to build its paradigms. In doing so, we look at the expansion, geometry and content

of the Universe, which together, allow us to de�ne some equations that are central to any
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modern cosmology textbook as well as this thesis.

1.2.2 Expansion

Before Hubble's seminal paper, Hubble (1929), the assumed cosmology was that of a steady

state model. Indeed Einstein even built this into his paper on General relativity in 1915

with a cosmological constant �, an `anti-gravity' energy to bring the Universe into static

equilibrium. In publishing the correlation between the distance to the galaxies and their

recession velocities, Hubble turned this idea on its head. The key point of the observational

evidence that he described is that the light from galaxies is redshifted, and the further

away the galaxies are, the more pronounced this Doppler e�ect becomes. Redshiftz, is

de�ned as:

z �
� obs � � em

� em
(1.1)

where � obs and � em are the observed and emitted wavelengths of light. Also if a nearby

object is receding with a velocity v, then

z �
v
c

(1.2)

where c is the speed of light. From this and Hubble's observations it follow that

v � H0r (1.3)

This is Hubble's law, whereH0 is the Hubble parameter H ptq measured at present andr

the actual (or proper) distance to the object. From such a tantalisingly simple relationship,

it took until the �nal years of the 20th Century and the work of Freedman et al. (2001),

for a value ofH0 � 72� 8 kms� 1Mpc� 1 to become the accepted value with 95% con�dence.

To measure the distance between two points in an expanding universe, we de�ne a co-

moving co-ordinate system that is carried along with the expansion. In this, the real

distance, between two galaxies is given by

r � aptqÝÑx (1.4)

whereÝÑx is the co-moving distance andaptqthe scale-factor of the Universe which measures

the expansion rate. At the present time we seta0 � 1. Hence it follows that at earlier

times a0   1.
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The Hubble parameter can be de�ned in terms ofa as

H ptq �
9a
a

(1.5)

where 9a is the time derivative of a.

1.2.3 Geometry

There is no reason to assume that Universe should have a at geometry, described in

terms of the spatial curvature k, where k � 0 in a at Universe. Other models with open,

k=-1, or closed k=+1, geometries are entirely possible. However recent observations,

particularly concerning the angular size of features of the cosmic microwave background,

together with an inationary theory which resolves many cosmological problems, have led

to a current acceptance that the Universe is indeed at, or very close to being so. This

can be expressed in terms of a density parameter 
 where;


 ptq �
�
� c

(1.6)

where � is the energy density of the universe and� c is a critical density that results in a

at universe i.e. 
 0 � 1. Each of these three geometries leads to the Universe evolving

di�erently, shown in Figure 1.1.

1.2.4 Content

The Universe is made from of di�erent types of material, each of which has properties that

a�ect the expansion rate. The importance of each to this expansion changes according

to the particular epoch. Radiation (photons) and baryons (non-relativistic matter) are

the observable everyday building blocks. Relativistic particles, such as neutrinos while

di�cult to observe are also part of any standard model of particle physics. Evidence

for the existence of dark matter has become overwhelming (as reviewed in Section 6.2),

although its constitution is at present unknown. The most dominant energy component

is the so-called dark energy. This is responsible for the acceleration of the expansion of

the Universe. Evidence for dark energy came from results of two competing surveys by

Perlmutter et al. (1999) and Schmidt et al. (1998). The goal of these projects was to

determine the cosmological parameters of the Universe by using the uniformity of class Ia

supernovae as standard candles to measure the distances to nearby galaxies. From their

results, it followed that there is a signi�cant dark energy contribution to the total energy
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Figure 1.1: The three possible expansions of the Universe within the cosmological model

with di�erent geometries; open (k � � 1), closed, (k � � 1) and at ( k � 0), correspond

to a di�erent evolution of the scale factor and hence future fate of the universe. Image

made by author.

density of the Universe. One of the proposed forms of dark energy is the cosmological

constant �, which is thought to permeate through space with constant energy density

(e.g. Peebles and Ratra 2003, Carroll et al. 1992).

The relation between the energy density and scale factor of each, can be shown to be:

� rad9
1
a4 ; � mat 9

1
a3 ; � DE � constant (1.7)

(where � mat is the combined energy density of dark matter and baryons).

Figure 1.2 shows how the energy density of the particular content of the Universe evolved

with time. At early times when radiation is the dominant factor, the expansion rate of

the Universe and the energy density can be shown to evolve with time as;

aptq9t1{2; � rad9
1

t3{2
(1.8)

When matter dominates;

aptq9t2{3; � mat 9
1

t8{3
(1.9)
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Figure 1.2: A schematic to illustrate the evolution of the energy density of radiation,

matter and dark energy. The evolution of the Universe will be due to a combination of all

three and the rate of expansion will depend which of the three is the dominant. Figure

adapted from Frieman et al. (2008).
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and when dark energy dominates;

aptq9exppHt q; � DE � constant (1.10)

If we express the density parameter 
 in terms of the each constituent parts of the Universe,

then for a at Universe where the dark energy is described by the cosmological constant

�:


 rel � 
 baryons � 
 DM � 
 � � 1 (1.11)

where 
 rel is the total contribution from all relativistic particles: i.e. photons and neutri-

nos, 
 DM is the dark matter contribution and 
 � the dark energy contribution. Recent

results from the all-sky mapping of the Cosmic Microwave Background (CMB) by Planck

Collaboration et al. (2016) suggest the important parameters to be;


 baryons � 0:0486� 0:0005


 mat � 0:3089� 0:0062


 � � 0:6911� 0:0062

H0 � 67:76� 0:46 kms� 1Mpc� 1

where 
 mat is the combined contribution from baryons and dark matter. These are in

good agreement with other probes of cosmology such as from weak lensing and the ba-

ryon acoustic oscillation (BAO), although the value for H0 from Planck is in tension with

a higher value from other recent surveys (eg. 73.24� 1:74 from observations of Cepheid

variables and Type 1 supernova Riess et al. 2016, and 69.32� 0:8 from CMB observations

by the Wilkinson Microwave Anisotropy Probe (WMAP) Bennett et al. 2013).

We can also de�ne the relationship between the mass density and pressure, theequation

of state for each of the constituent parts in the form

p � !� (1.12)

where ! � 0 for matter, ! � 1
3 for radiation, ! ¤ � 1

3 for an accelerated expansion (where

there are a suite of models of which! � � 1 for a cosmological constant).

One of the central questions of cosmology today is to the nature of this dark energy:

whether it is indeed the constant term, �, that Einstein wrote into his equation for general

relativity (i.e. where ! � � 1).
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1.2.5 Describing the Universe

Given the observational and theoretical evidence for the expansion, geometry and content

of the Universe, we are now able to express the cosmological paradigm in a series of

equations. The Friedmann equation is the most important of these as it describes how the

expansion of the Universe depends upon its content, geometry and cosmological constant,

and can be derived from both Newtonian physics and General Relativity and is de�ned

as:

�
9a
a


 2

�
8�G

3
� �

kc2

a2 �
� c2

3
(1.13)

where � is the overall density of the Universe and where for normalization purposes the

speed of light c can be set to equal 1. A second important relation is theuid equation

which shows how the density of the material in the Universe,� , evolves with time

9� � 3
9a
a

�
� �

p
c2

	
� 0 (1.14)

With these two equations we can derive theacceleration equation that describes the

acceleration of the scale factor.

:a
a

�
� 4�G

3

�
� �

3p
c2



(1.15)

Since we know that the universe is not only expanding but expanding with a changing

rate, we can also de�ne adeceleration parameter that describes this.

q0 �

 M; 0

2
� 
 � (1.16)

where 
 M is the overall contribution from baryons and dark matter and where q0   0

therefore implies an accelerating universe i.e.:a ¡ 0. Assuming k � 0, and with 
 M � 0.3

and 
 � � 0:7, this gives a value ofq0 � 0:55.

The Hubble parameter H changes with time such that:

H pzq � H0Epzq (1.17)

where H0 is the value of the Hubble parameter today, andEpzq is dependent on the

underlying cosmology. In our model of a at Universe with a cosmological constant:

Epzq �
a


 M p1 � zq3 � 
 � (1.18)
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We can now use this model to describe how distances are measured in such a Universe, as

detailed more fully in Appendix A.

1.3 An Overview of X-ray Astronomy

We have been observing the Universe with telescopes for over 400 years in the optical

part of the spectrum. However, it is only within in the past half-century that it has

been possible to study astronomical X-rays. The Earth's atmosphere completely absorbs

extra-terrestrial X-rays, and so the only way we can view them is by launching X-ray

observatories into space.

Since the environment of space is hostile, the material that the detector is made from

needs to be robust enough to withstand cosmic rays, work in a vacuum, as well as survive

the rigours of a rocket launch.

1.3.1 X-ray Emission Processes in Astrophysics

Astronomical X-rays arise from a variety of processes each of which indicate the nature of

their source.

Line Emission

In a hot gas, electrons are excited to higher level energy shells further from the nucleus

of an atom. When they fall back to the lower state, a photon is emitted with energy

that is the di�erence between the energy states. For X-ray emission, typically in a gas

of T ¡ 106K, the atom has become ionised, and the energy di�erence when an electron

returns to its ground state is su�cient to emit an X-ray photon. The X-ray line emission

is given by (e.g. Osterbrock 1974)

»
eline

� d� � npX i qne
h3� 
 pTgqB
4! gspX i q

�
2

� 3m3
ekTg

� 1{2

e� � E {kT (1.19)

where � E is the di�erence in energy between excited and ground state,B is the branching

ratio of the line, 
 the collisional strength (rather than the cosmological density para-

meter), ! gspX i q is the statistical weight of the energy levels of the ion. In galaxy cluster
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Figure 1.3: Bremsstrahlung radiation occurs when an electron's path is accelerated by an

ionised particle.

and AGN astrophysics, an important and prominent line is the iron line Fe K� line at

around 6.7 keV.

Bremsstrahlung

Bremsstrahlung braking radiation occurs when an electron is accelerated in the presence

of an ionised atom of a hot gas as shown in Figure 1.3. For example the intra-cluster

medium (ICM) of galaxy clusters (Section 1.4.3), whereT ¡ 3 � 107 keV, bremsstrahlung

is the dominant emission process. In the ICM the emission is predominately due to the

acceleration of electrons by ions of hydrogen and helium. The energy emitted per unit

time, frequency and volume at a frequency� of an ion of chargeZ in a gas of temperature

T is given by1:

� f f
� �

25�e 6

3mec3

� 2�
2mek

	 1{2
neT1{2e� h� {kT

¸

i

Z 2
i ni gf f pZ i ; T; � q (1.20)

where, gf f pZ i ; T; � q is the Gaunt factor (which corrects for quantum e�ects).

Inverse Compton scattering

Inverse Compton scattering of low-energy photons to higher energy X-ray photons by

relativistic electrons, Figure 1.4, is a process responsible for X-ray emissions from AGN

(Section 1.4.2) and for the power law component of their X-ray spectra. The fractional

change of energy of a photon can be shown to be:2

1 from www.astro.utu.�/ � cynn/astroII/l3.html
2 from www.astronomy.ohio-state.edu/ � ryden/ast822/week10.pdf
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Figure 1.4: Inverse Compton of a low energy photon scattered by high energy electron,

results in the increase in energy of the photon. Image by author

X f � X i

X i
�

p i � i � X i qp1 � cos� q
 i p1 � � i cos� q � X i p1 � cos� q

(1.21)

where X i and X f are the dimensionless initial and �nal energy of photon, � is the angle

which the photon has been scattered,� i = vi {c is the initial speed of the incoming electron

(in units of the speed of light) and  i is the initial Lorentz factor of the electron. The

maximum fractional energy change, therefore, for a low energy photon (X i ! 1) and

relativistic electron (  i � 1000q reected back from the direction it came (cos� � � 1) can

be large enough to increase the photon energy by a factor of 106 and hence an ultra-violet

photon can be energised in the X-ray part of the spectrum.

X f � X i

X i
� 4 2

i (1.22)

Synchrotron radiation

In a similar mechanism to thermal bremsstrahlung, X-rays are emitted when relativistic

electrons are accelerated around magnetic �eld lines, Figure 1.5. In some types of AGN

(Section 1.4.2) some of the X-ray energy released from the central engine is due to syn-

chrotron emission from particles accelerated by the magnetic �eld of the accretion disk or

associated black hole.

1.4 X-ray Sources

Of the many di�erent types of astronomical X-ray sources, some are not relevant to this

thesis. These include; planetary X-rays from within our Solar System, for example due to

uorescence from the atmosphere of Venus and Mars, or due to Jupiter's strong magnetic
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Figure 1.5: Synchrotron radiation produced by electrons spiraling along a magnetic �eld.

Image by author.

�eld; Solar X-rays from the sun's corona as well as solar ares due to the magnetic �eld;

from supernova remnants and neutron stars where X-rays are produced from the shock

waves that heats the debris of the exploded star; and from binary sources where energy

of in-falling matter onto an accretion disk is radiated at as X-rays.

Other sources are relevant to the projects described in this thesis and so are expanded

upon as follows.

1.4.1 X-ray Background

The term X-ray background has two interpretations. The �rst is instrumental. This is

dependent on the detector and telescope and should be accounted for when extracting

image, light-curves and spectra as described in Section 2.3.2 in relation to XMM Newton.

The second interpretation is astrophysical. This is the phenomenon known as the cosmic

X-ray background (CXB) which is relevant to all X-ray observatories as well as to all the

science projects described in this thesis. Here, we describe this second aspect in more

detail.

Before the resolution of X-ray point sources was possible, it was thought that an X-ray

background bathed the universe in a di�use glow analogous to the Cosmic Microwave

Background (CMB) (though the CXB was discovered two years earlier than the CMB).

The original assumption was that this was due to unresolved Active Galactic Nuclei,

(AGN) that were too dim to be detected as unique sources in the early X-ray instruments.
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